
Spontaneous processes and entropy

EX: Ice melting at RT

EX: Salt dissociation

A spontaneous process is one that occurs without outside intervention.

• The driving force for a spontaneous process is an **increase** in the **entropy of the universe**.

• A measure of molecular randomness or disorder.

Amplitude of the S_{system}

$$2C_{(s)} + 1O_{2(g)} \rightarrow 2CO_{2(g)}$$

$$2SO_{2(g)} + 1O_{2(g)} \rightarrow 2SO_{3(g)}$$

$$2MgO_{(s)} + 1CO_{2(g)} \rightarrow 2MgCO_{3(s)}$$

$$CO_{2(g)}$$
,T = 300K $CO_{2(g)}$,T = 400K

$$CaO_{(s)}$$
 $H_2O_{(I)}$ $SeO_{2(g)}$ $SeO_{3(g)}$

A measure of molecular randomness or disorder.

What is the measurable quantity ??

S =

Calculate the ΔS^0 of the system:

$$2H_{2(g)} + 1O_{2(g)} \rightarrow 2H_2O_{(g)}$$

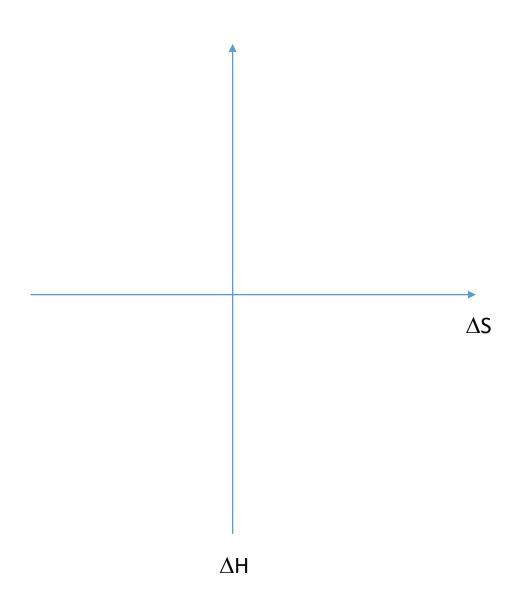
 $S^0 \text{ of } H_{2(g)} = 131 \text{ J/molK}$
 $S^0 \text{ of } O_{2(g)} = 205 \text{ J/molK}$
 $S^0 \text{ of } H_2O_{(g)} = 189 \text{ J/molK}$

Tracking Entropy

$$H_2O_{(I)} \leftarrow \rightarrow H_2O_{(g)}$$

$$\Delta G^0 = \Delta H^0 - T \Delta S^0$$

Standard state: 1M, 1atm


$$G^0$$
 (product) < G^0 (reactant) ΔG^0

$$G^0$$
 (product) > G^0 (reactant) ΔG^0

$$\Delta G = \Delta H - T\Delta S$$

spontaneity of this reaction changes at $\Delta G = 0$

 $\Delta G = \Delta H - T\Delta S$

Free Energy and Reactions

 ΔH ΔS ΔG

$$K_{(s)} + H_2O_{(l)} \rightarrow K^+_{(aq)} + OH^-_{(aq)} + 1/2 H_{2(g)}$$
, exothermic

$$H_2O_{(I)} + 1/2 O_{2(g)} \rightarrow H_2O_{2(I)}$$
, endothermic

$$AlBr_{3(s)} \rightarrow Al_{(s)} + 3/2 Br_{2(l)}$$
, endothermic

$$2Mg_{(s)} + CO_{2(s)} \rightarrow 2MgO_{(s)} + C_{(s)}$$
, exothermic

Free Energy and equilibrium

Not spontaneous

spontaneous

$$\Delta G^{\circ} = - RT \ln K$$
 $K = exp(\frac{-\Delta G^{\circ}}{RT})$

A particular reaction has a ΔH° value of -10 kJ and ΔS° of -500 J/mol K at 298 K. Assuming that ΔH° and ΔS° hardly change with temperature, determine the temperature in °C at which the spontaneity of this reaction changes.

Free Energy and Reaction Quotient

$$\Delta G = G(P) - G(R)$$
 $\Delta G < 0$, $\longleftrightarrow Q < K$
 $\Delta G = 0$, $\longleftrightarrow Q = K$
 $\Delta G > 0$, $\longleftrightarrow Q > K$

$$\Delta G = \Delta G^0 + RT \ln Q$$

What are ΔG and K at equilibrium at 25C for $H_2O_{(I)} \leftarrow \rightarrow H_2O_{(g)}$

(A)
$$\Delta G < 0$$
 (B) $\Delta G = 0$

(C)
$$\Delta$$
G>0

What is ΔG for the following reaction under the given conditions at 400K? Will the reaction go toward products, reactants or is it at equilibrium? $P_{N2} = 4.2$ bar, $P_{H2} = 1.8$ bar, $P_{NH3} = 21$ bar, K(400K) = 41 $N_2 + 3H_2 \leftarrow \rightarrow 2NH_3$