Solubility

Solubility: the maximum amount of solute can dissolve in the solution at a give temperature

Molar solubility: Gram solubility:

Soluble or insoluble

Solubility product

 $A_{m}B_{n(s)} \rightleftharpoons m A_{(aq)}^{n_{+}} + nB_{(aq)}^{m_{-}} \qquad K_{sp} = [A^{n_{+}}]^{m} [B^{m_{-}}]^{n}$

 $\operatorname{Ag_2CrO}_{4(s)} \rightleftharpoons 2\operatorname{Ag^+}_{(aq)} + \operatorname{CrO}^{2-}_{4(aq)} \qquad \operatorname{K_{sp}} = [\operatorname{Ag^+}]^2 [\operatorname{CrO}^{2-}_{4(aq)}]$

Solubility and Ksp

The solubility product constant of CaF_2 is 3.9 x10⁻¹¹. Calculate the concentration of Ca^{2+} and F^- in a saturated solution of CaF_2 and determine the solubility of CaF_2 in grams per liter of solution

Example	K _{sp} and solubility (s)				
$\label{eq:AgCl} \begin{array}{rrr} AgCl_{(s)} \rightleftharpoons Ag^{+} & + & Cl^{-} \\ \\ \mbox{Equilibrium concentration} & : & s & s \end{array}$	$K_{sp} = s \times s = s^2$	$s = \sqrt{K_{sp}}$			
$\label{eq:ag2} \begin{array}{rcl} Ag_2 CrO_{4(s)} \rightleftharpoons 2Ag^+ \ + \ CrO_4^{2-} \end{array}$ Equilibrium concentration $\ : \ 2s \ s \ \end{array}$	$K_{sp} = (2s)^2 \times s = 4s^3$	$s = \sqrt[3]{\frac{Ksp}{4}}$			
$\begin{array}{rllllllllllllllllllllllllllllllllllll$	$K_{sp} = s \times (3s)^3 = 27 s^4$	$s = \sqrt[4]{\frac{K_{sp}}{27}}$			
$Ca_{3}(PO_{4})_{2(s)} \rightleftharpoons 3 Ca^{2+} + 2 PO_{4}^{3-}$ Equilibrium concentration : 3s 2s	$K_{sp} = (3s)^3 \times (2s)^2 = 108 s^5$	$s = \sqrt[5]{\frac{K_{sp}}{108}}$			

 Ag_2CrO_4 is a red solid that dissolves in water to the extent of 0.029g/L, calculate K_{sp}

Precipitation reaction quotient

A precipitation reaction is one in which two soluble salts are combined in aqueous solution to produce an insoluble substance

AgNO₃ NaCl $Q_{sp} = [Ag^+] [Cl^-]$

 $Q_{sp} < K_{sp}$: no ppt

 $Q_{sp} > or = K_{sp} : ppt$

Suppose 500ml of a solution of $CaCl_2$ with Cl⁻ concentration of 8.00x10⁻⁶ M is added to 300ml of a 0.00400M solution of AgNO₃. (a) will a precipitate of AgCl_(s) have formed when equilibrium is reached?

(b) Calculate the equilibrium concentrations of Ag⁺ and Cl⁻ ions resulting from the precipitation reaction (K_{sp} of AgCl = 1.6x10⁻¹⁰)

Common ion effect

 $K_{\rm sp}$ =1.6x10⁻¹⁰ $AgCl_{(s)} \leftrightarrow Ag^+_{(aq)} + Cl^-_{(aq)}$

 $NaCl_{(s)} \leftrightarrow Na^+_{(aq)} + Cl^-_{(aq)}$

Suppose AgCl_(s) is added to a 0.100M NaCl solution. What is its solubility

Effect of pH on solubility: pH can affect the solubility of a salt

1. Solubility of metal hydroxide

 $Zn(OH)_{2(s)} \leftrightarrow Zn^{2+}_{(aq)} + 2 OH^{-}_{(aq)} K_{sp} = 1.2x10^{-17}$

pH< 7 (acidic solution): H⁺ will interact with OH⁻ ions, solubility of the salt increases pH> 7 (basic solution): There are OH⁻ ions, solubility of the salt decreases

2. Solubility of metal salts of the conjugate base of weak acid

 $CaF_{2(s)} \leftrightarrow Ca^{2+}_{(aq)} + 2 F^{-}_{(aq)} K_{sp} = 3.9 \times 10^{-11}$

pH< 7 (acidic solution): H⁺ will interact with conjugated base, solubility of the salt increases

pH> 7 (basic solution): solubility is not affected

3. Solubility of metal salts of the conjugate base of strong acid

 $AgCl_{(s)} \leftrightarrow Ag^{+}_{(aq)} + Cl^{-}_{(aq)} K_{sp} = 1.6 \times 10^{-10}$

pH< 7 (acidic solution): solubility is not affected pH> 7 (basic solution): solubility is not affected

Anion of metal salt	Acid/base	Solubility		
OH-	acid	increase		
	base	decrease		
Conjugate base of weak acid	acid	increase		
	base	No effect		
Conjugate base of strong acid	acid	No effect		
	base	No effect		

Compute the solubility of $Fe(OH)_3$ in pure water and compare it with a solution buffer at pH=11 ($K_{sp} = 4x10^{-38}$)

How to judge a compound soluble or insoluble?

ions	soluble			ppt								
1A+,NH ₄ +	All anions			Li ₂ CO ₃ , Li ₃ PO ₄								
NO ₃ ⁻ ,ClO ₄ ⁻ ,CH ₃ COO ⁻	All cations											
F ⁻	All other cations						Ca ²⁺	Sr ²⁺	Ba ²⁺	Pb ²⁺		
Cl ⁻ , Br ⁻ ,l ⁻				Ag+	Cu+	Hg ²⁺				Pb ²⁺		
SO ₄ ²⁻								Sr ²⁺	Ba ²⁺	Pb ²⁺		
C ₂ O ₄ ²⁻							Ca ²⁺	Sr ²⁺	Ba ²⁺			
CrO ₄ ²⁻					Ag+					Ba ²⁺	Pb ²⁺	
OH-	1A+	NH_4^+	Sr ²⁺	Ba ²⁺	All other cations							
S ²⁻	1A+	NH_4^+	2A ²⁺									
CO ₃ ²⁻ , PO ₄ ³⁻	1A+	NH_4^+										
SO ₃ ²⁻	1A+	NH_4^+										