
Acids and Bases

Properties	Acids	Bases
1. Taste	Sour	Bitter
2. Litmus paper	Turns Litmus paper	Turns Litmus paper
3. pH	pH 7 (high concentration of)	pH 7 (high concentration of)
4. Arrhenius	Yields excess H ⁺ in H ₂ O EX: $HCl_{(aq)} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$	Yields excess OH^{-} in $H_{2}O$ EX: $NaOH_{(aq)} \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$
5. Brønsted–Lowry	Proton EX: $HCl_{(aq)} + H_2O \rightarrow H_3O^+_{(aq)} + Cl^{(aq)}$	Proton EX: $NH_{3(aq)} + H_2S \rightarrow NH_4^+_{(aq)} + SH_{(aq)}^-$

	Arrhenius acid base	Brønsted–Lowry acid base
Definition of acid	H⁺ generator	H⁺ provider
Definition of base	OH ⁻ generator	H ⁺ receiver
Acid base reaction	Acid + Base \rightarrow salt + H2O HCl + NaOH \rightarrow NaCl + H2O	Proton transfer reaction, formation of H2O is no necessarily need $NH_3 + HCI \rightarrow NH_4^+ + CI^-$
Applicable system	Only for aqueous solution	Aqueous and non-aqueous solution

Conjugated Acids and Bases

1 acid-base reaction will have conjugated acid-base pair

How to judge conjugated acid and base: acid = conjugate base + H⁺

 $HCIO_4 + H_2SO_4 \rightarrow CIO_4^- + H_3SO_4^+$

$HNO_3 + F^- \rightarrow NO_3^- + HF$

Which is more acidic: $HNO_3 > HF$ Which is more basic: $F^- > NO_3^-$

Stronger acid, its conjugate base will be a weak baseWeakstrongStronger base, its conjugate acid will be a weak acidWeakstrong

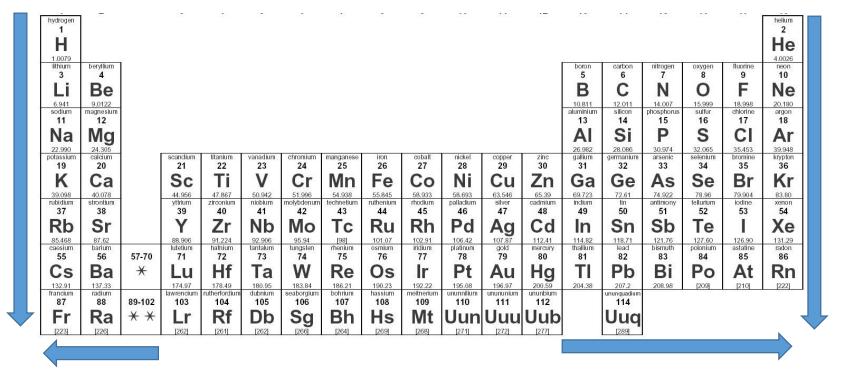
EX: Which of the following species are NOT conjugated acid-base pair? (A) H_3O^+ , OH^- (B) NH_4^+ , NH_3 (C) HCO_3^- , CO_3^{2-} (D) $HC_2H_3O_2$, $C_2H_3O_2^-$ (E) HCI, CI^- EX: with known acidity: HCL > HF>HNO₂>HClO>HCN, which one has the strongest conjugate base?

Type of acid

1. inorganic acid

1a. hydrogen halide: HCl, HBr, HI, HF

1b. Oxyacid: H_2SO_4 , H_2SO_3 , HNO₃, HNO₂, H_3PO_4 , H_3PO_3 , H_3PO_2 , HClO₄, HClO₃, HClO₂, HClO

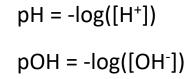

2. Organic acid

2a. Carboxylic acid: CH₃COOH, C₆H₅COOH, H₂C₂O₄

Type of base

1. <u>Metal hydroxide:</u>	2. <u>Metal oxide</u> :	3. <u>Metal Hydride</u> :
Fe(OH) ₃ , Fe(OH) ₂ Sn(OH) ₄ , Sn(OH) ₂ NaOH	Na ₂ O	NaH

Strong or weak acid/base ??


acidity of oxy acid:
$$n_0 - n_H = 3, 2, 1, 0$$

Basicity of metal hydroxide

acidity of hydrogen halide

strong base:

Quantify the acid and base strength: pH, pOH

Once you know [H⁺] and [OH⁻], you know the pH and pOH

How to know [H⁺] and [OH⁻]? Use **equilibrium constant** !!

Neutral : H ₂ O	$H_2O_{(I)} \rightarrow H^+_{(aq)} + OH^{(aq)} \Delta H = 56 \text{ kJ/mol}$	For 1L water, at 25C
Acidic: strong acid, weak acid		[H ₂ O] = (1000/18)/1 = 55.56 M
Acture. Strong actu, weak actu		pH = -log([H ⁺]) = -log(10 ⁻⁷) = 7
Basic : strong base, weak base		pOH = -log([OH ⁻]) = -log(10 ⁻⁷) = 7

 $K_{eq} = K_W = [H^+][OH^-] = 10^{-14} \text{ at } 25C$

 $\alpha = [H^+]/[H_2O] \times 100\% = 1.8 \times 10^{-7} \%$

Temperature	K _w	α	рК _w	Neut	ral
			(= pH+pOH)	[H+]	рН
T = 25C	10-14	1.8 x 10 ⁻⁷ %	14	10 ⁻⁷ M	7
T > 25C					
T < 25C					

Acidic: strong acid, weak

$$HA_{(aq)} + H_2O_{(I)} \rightarrow H_3O^+_{(aq)} + A^-_{(aq)}$$

$$K_a = K_c = \frac{[H_3O^+][A^-]}{[HA]} = \frac{[H^+][A^-]}{[HA]}$$

Larger K_a, higher , more acidic

Basic : strong base, weak base

$$BOH_{(aq)} + H_2O_{(I)} \rightarrow B^+_{(aq)} + OH^-_{(aq)}$$

$$K_{b} = K_{c} = \frac{[B^{+}][OH^{-}]}{[BOH]}$$

Larger K_b, higher

, more basic

 K_a and K_b is a good indication of acid and base strength

Dissociation Constants of Some Acids at 25°C^a

Acid ^b	НА	A -	Ka	р <i>К</i> "
Perchloric	HCIO4	CIO	~10+8	~-8
Permanganic	HMnÔ₄	MnO ₄	~10+8	~ -8
Chloric	HCIO ₃	CIO	~10+3	~-3
Nitric	HNO3	NO ²		
Hydrobromic	HBr	Br-		
Hydrochloric	HCI	CI-		
Sulfuric (1)	H ₂ SO ₄	HSO ₄		
Hydrated proton or	2 4	-		
protonated solvent	H+	H ₂ O(solvent)	1.00	0.00
Trichloroacetic	CCI ₃ COOH	-000,100	2×10^{-1}	0.70
Oxalic (1)	ноос-соон	HOOC-COO-	5.9×10^{-2}	1.23
Dichloroacetic	CHCI, COOH	CHCI2COO-	3.32×10^{-2}	1.48
Sulfurous (1)	H ₂ SO ₃	HSO ₂	1.54×10^{-2}	1.81
Sulfuric (2)	HSO-	SO ₄ ²	1.20×10^{-2}	1.92
Phosphoric (1)	H ₃ PO	H_POT	7.52×10^{-3}	2.12
Bromoacetic	CH, BrCOOH	CH ₂ BrCOO ⁻	2.05×10^{-3}	2.69
Malonic (1)	HOOC-CH2-COOH	HOOC-CH2-COO-	1.49×10^{-3}	2.83
Chloroacetic	CH_CICOOH	CH_CICOO-	1.40×10^{-3}	2.85
Nitrous	HNO,	NO ₂	4.6 × 10-4	3.34
Hydrofluoric	HF	F-	3.53 × 10-4	3.45
Formic	нсоон	HCOO-	1.77 × 10-4	3.75
Benzoic	C ₆ H ₅ COOH	C ₆ H ₅ COO ⁻	6.46 × 10 ⁻⁵	4.19
Oxalic (2)	H00C-C00-	-00C-C00-	6.4 × 10 ⁻⁵	4.19
Àcetic	СН _а СООН	CH3C00-	1.76 × 10 ⁻⁵	4.75
Propionic	CH ₃ CH ₂ COOH	CH3CH2COO-	1.34 × 10 ⁻⁵	4.87
Malonic (2)	HOOC-CH2-COO-	-0CC-CH2-C00-	2.03 × 10 ⁻⁶	5.69
Carbonic (1)	$CO_2 + H_2O$	HCO ₃	4.3 × 10 ⁻⁷	6.37
Sulfurous (2)	HSO ₃	SO ₃ ⁻	1.02×10^{-7}	6.91
Hydrogen sulfide (1)	H ₂ S	HS-	9.1 × 10 ⁻⁸	7.04
Phosphoric (2)	H ₂ PO ₇	HPO2-	6.23 × 10 ⁻⁸	7.21
Ammonium ion	NH ⁺	NH ₃	5.6×10^{-10}	9.25
	HCN	CN-	4.93×10^{-10}	9.25
Hydrocyanic Silver ion				
	Ag+ + H ₂ O	AgOH	9.1 × 10-11	10.04
Carbonic (2)	HCO ₃	CO ₃ -	5.61×10^{-11} 2.4×10^{-12}	10.25
Hydrogen peroxide	H ₂ O ₂	HO ₂ S ²⁻		11.62
Hydrogen sulfide (2)	HS-		1.1×10^{-12}	11.96
Phosphoric (3) Water	HPO ² - H ₂ O	PO3- OH-	2.2×10^{-13}	12.67

Strong acid, base:

- ~100% dissociate into H⁺ + A⁻ or B⁺ + OH⁻
- Very big K_a or K_b

Ex: calculate the pH of 0.1M and 1x10⁻¹⁰M HCl

Weak acid, base:

- Partially dissociate into H⁺ + A⁻ or B⁺ + OH⁻
- Small K_a or K_b (<1)

Ex: calculate the pH and percent dissociation of 1M acetic acid CH_3COOH , $K_a = 1.8 \times 10^{-5}$

K_a and K_b of conjugated acid and base:

K_a=

$$HA_{(aq)} + H_2O_{(I)} \rightarrow H_3O^+_{(aq)} + A^-_{(aq)} \qquad A^-_{(aq)} + H_2O_{(I)} \rightarrow HA_{(aq)}$$
$$K_a = \frac{[H^+][A^-]}{[HA]} \qquad K_b = \frac{[HA][OH^-]}{[A^-]}$$

$$F_{(aq)} + H_2O_{(I)} \rightarrow HA_{(aq)} + OH_{(aq)}$$

 $K_b = \frac{[HA][OH^-]}{[A^-]}$

Ka x Kb =
$$\frac{[H^+][A^-]}{[HA]} \times \frac{[HA][OH^-]}{[A^-]} = [H^+][OH^-] = K_W$$

Acid	K _a	Base	K_b
HNO ₃	(Strong acid)	NO ₃ ⁻	(Negligible basicity)
HF	6.8×10^{-4}	F ⁻	1.5×10^{-11}
HC ₂ H ₃ O ₂	1.8×10^{-5}	$C_2H_3O_2^-$	5.6×10^{-10}
H ₂ CO ₃	4.3×10^{-7}	HCO ₃ ⁻	2.3×10^{-8}
NH4 ⁺	5.6×10^{-10}	NH ₃	1.8×10^{-5}
HCO3	5.6×10^{-11}	CO_{3}^{2-}	1.8×10^{-4}
OH-	(Negligible acidity)	O ^{2-'}	(Strong base)

 K_a is inversely proportional to K_b

Stronger acid, its conjugate base will be a weak base Weak strong Stronger base, its conjugate acid will be a weak acid Weak strong

 $pK_{a} + pK_{b} = pK_{w} = 14 \text{ at } 25C$

Polyprotic acid

Acid with multiple dissociable protons :

 H_2SO_4 , H_2SO_3 , H_2CO_3 , H_3PO_3

 H_3PO_4

Polyprotic acids dissociate in a stepwise manner

Ex: H₂SO_{4 (aq)}

Ex: H₃PO_{4 (aq)}

Major species:

Minor species:

Major species:

Minor species:

Calculate the concentrations at equilibrium of H_2CO_3 , HCO_3^- , CO_2^{2-} and H^+ in a saturated aqueous solution of H_2CO_3 in which the original concentration of H_2CO_3 is 0.034M (K_{a1} = 4.3 x10⁻⁷, K_{a2} = 4.8x10⁻¹¹)

Salts are also called ionic compounds (cation + anion)

Salts can be either soluble or insoluble in water

Soluble salts: can act as acid, base or neutral in water

2 step process: dissociation of salt, interaction with water

	cation		anion
acidic	Conjugate acid of NH ₄ ⁺	base	
neutral	Group 1 and 2		Conjugate base of acid ClO_4^- , ClO_3^- , I^- , Br ⁻ , Cl^- , $NO_3^ SO_4^{-2-}$
basic			Conjugate base of acid HS ⁻ , HCO ₃ ⁻ , HPO ₄ ²⁻ , CH ₃ COO ⁻

Calculate the pH of a 0.30M NaF solution, $K_a = 6.6 \times 10^{-4}$.

 $NaF_{(aq)} \rightarrow Na^{+}_{(aq)} + F^{-}_{(aq)}$

 $F_{(aq)}^{-} + H_2O_{(I)} \rightarrow HF_{(aq)} + OH_{(aq)}^{-}$

Arrange the following 0.1M solutions in order of the most acidic to most basic : KOH, KCl, KCN, NH₄Cl, HCl