Chemical kinetics

Rate (average): change in quantity in a given amount of time

 $\mathbf{R} = \frac{\Delta \boldsymbol{Q}}{\Delta t}$

EX. Speed of a car. $\mathbf{v} = \frac{\Delta \mathbf{D}}{\Delta t}$ A car traveled a distance of 25 miles in 0.5 hours. What was its average speed during that time?

= Rate

Rate of a chemical reaction

Plotting Concentration vs. Time

$$2NO_{2(g)} \rightarrow 2NO_{(g)} + O_{2(g)}$$

Rate = $-\frac{1}{2} \frac{\Delta[NO_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[NO]}{\Delta t} = \frac{\Delta[O_2]}{\Delta t}$

 $\frac{\Delta[NO_2]}{\Delta t} = \frac{[NO_2]_f - [NO_2]_i}{t_f - t_i}$

Table 11-1Concentrations of Reactant andProducts as a Function of Time for the Reaction $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ (at 300°C)

	0	Concentration (mol/L)		
Time (±1s)	NO ₂	NO	O ₂	
0	0.0100	0	0	
50	0.0079	0.0021	0.0011	
100	0.0065	0.0035	0.0018	
150	0.0055	0.0045	0.0023	
200	0.0048	0.0052	0.0026	
250	0.0043	0.0057	0.0029	
300	0.0038	0.0062	0.0031	
350	0.0034	0.0066	0.0033	
400	0.0031	0.0069	0.0035	

Average rate from 0 to 50 s is the <u>slope</u> of the line connecting the tow points

© 2016 Cengage Learning

<u>General case</u>

 $aA + bB \rightarrow cC + dD$ Rate = $-\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{c}\frac{\Delta[C_2]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t}$ EX: For a reaction: $4NO_{2(g)} + O_{2(g)} \rightarrow 2N_2O_5(g)$. If known N_2O_5 formation rate of 0.048 *M*/sec, Write the rate expression in terms of the disappearance of NO_2 and O_2 and the formation of N_2O_5 . What is O_2 disappearance rate? What is NO_2 disappearance rate? What is the overall reaction rate?

How to measure reaction progression ??

Stopped-Flow experiment

$$aA + bB \rightarrow cC + dD$$

Rate
$$= -\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{c}\frac{\Delta[C_2]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t}$$

<u>Rate Law</u> of a reaction

• All rate laws are obtained from experiments

Differential Rate Law

The reaction rate is related to the <u>concentrations</u> of the reacting species

Rate = $k [A]^n [B]^m$ not $k [A]^a [B]^b$

k : rate constant (T dependent)
n : order with respect to A
m : order with respect to B
n + m : overall reaction order

Integrated Rate Law

The concentration is related to the *reaction time*

$$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = k$$

 $[A]_t = kt + c$

Reaction order

Neuclioi	TUTUET	Reaction	Rate law*
• Rate = k [R ₁] ^a [R ₂] ^b		Gas phase $H_2 + I_2 \longrightarrow 2 HI$	$k[H_2][I_2]$
• k	: reaction constant	$2 \text{ HI} \longrightarrow \text{H}_2 + \text{I}_2$	$k[HI]^2$
• a-	+b+: reaction order		
• 1 ^s	^t order reaction	$2 N_2 O_5 \longrightarrow 4 NO_2 + O_2$	$k[N_2O_5]$
• 2 ^r	nd order reaction		
		$2 \text{ N}_2 \text{O} \longrightarrow 2 \text{ N}_2 + \text{O}_2$	$k[N_2O]$
<u>Unit of </u>	<u>c</u>	$\frac{2 \text{ NO}_2 \longrightarrow 2 \text{ NO} + \text{O}_2}{\text{C}_2 \text{H}_6 \longrightarrow 2 \text{ CH}_3}$	$k[\text{NO}_2]^2$ $k[\text{C}_2\text{H}_6]$
Order in A	Rate law	Agueous solution	R[cyclopropane]
0	Rate = k	$\begin{array}{l} H_{3}O^{+} + OH^{-} \longrightarrow 2 H_{2}O \\ CH_{3}Br + OH^{-} \longrightarrow CH_{3}OH + Br^{-} \end{array}$	k[H ⁺][OH ⁻] k[CH ₃ Br][OH ⁻]
1	Rate = k [A]	$C_{12}H_{22}O_{11} + H_2O \longrightarrow 2 C_6H_{12}O_6$	$k[C_{12}H_{22}O_{11}][H^+]$
2	Rate = $k[A]^2$		

$BrO_{3}^{-}(aq) + 5Br^{-}(aq) + 6H_{3}O^{+}(aq) \rightarrow Br_{2}(aq) + 9H_{2}O(l)$

Rate = $k [BrO_3^{-}]^{x} [Br^{-}]^{y} [H_3^{-}O^{+}]^{z}$

Initial concentration (M)				
Exp.	BrO ₃ ⁻	Br ⁻	H_3O^+	Initial Rate M/sec of BrO ₃ -
1	0.1	0.1	0.1	0.0012
2	0.2	0.1	0.1	0.0024
3	0.1	0.3	0.1	0.0035
4	0.2	0.1	0.15	0.0055

EX: For a reaction: $2NO_{(g)} + O_{2(g)} \rightarrow 2NO_2(g)$. When the [NO] is doubled, the reaction rate increase by a factor of 4, When both the [NO] and $[O_2]$ are doubled, the reaction rate increase by a factor of 8, What are the reactant orders, the overall order of the reaction, and the unis of k

```
2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}
```

integrated Rate Law

The concentration is related to the <u>reaction time</u>

0th order

1st order

2nd order

 $[A]_t = -kt + [A]_0$

 $ln([A]_t) = -kt + ln([A]0)$ [A]_t = A₀exp (-kt)

Table 11-6	Summary of the Kinetics for Reactions of the Type $aA \rightarrow$ Products That Are Zero, First, or Second Order in [A]

		Order	
	Zero	First	Second
Rate law	Rate $= k$	Rate = $k[A]$	Rate = $k[A]^2$
Integrated rate law	$[A] = -kt + [A]_0$	$\ln[A] = -kt + \ln[A]_0$	$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$
Plot needed to give a straight line	[A] versus t	ln[A] versus t	$\frac{1}{[A]}$ versus t
Relationship of rate constant to the slope of straight line	Slope = -k	Slope = -k	Slope $= k$
Half-life	$t_{1/2} = \frac{[A]_0}{2k}$	$t_{V2} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$

© 2016 Cengage Learning

Consider the reaction $aA \rightarrow Products$. $[A]_0 = 5.0 M and k = 1.0 \times 10^{-2}$ (assume the units are appropriate for each case). Calculate [A] after 30.0 seconds have passed, assuming the reaction is:

a)	Zero order	4.7 <i>M</i>

- b) First order 3.7 M
- c) Second order 2.0 M

Using integrated Rate Law to determine reactant concentration and reaction time

Ex: for the reaction $2 N_2 O_5 \longrightarrow 4 NO_2 + O_2$

Its rate law $\mathbf{R} = -\frac{d[N_2O_5]}{dt} = k[N_2O_5]$, where the $k = 5.2 \times 10^{-3} \text{ s}^{-1}$ at 65 °C

(1) Assume the initial concentration of N_2O_5 is 0.04 *M*, what is the concentration of N_2O_5 after 600 s?

(2) Assume the initial concentration of N_2O_5 is 20 *M*, how long does it take to reach a concentration of 2 *M*?

Using integrated Rate Law to determine Half live

$$\ln[A]_{t} - \ln[A]_{0} = \ln \frac{[A]_{t}}{[A]_{0}} = -kt$$

$$t = \frac{1}{k} \ln \frac{[A]_0}{[A]_t}$$

$$t_{1/2} = \frac{1}{k} \ln \frac{[A]_0}{\frac{1}{2}} = \frac{1}{k} \ln 2$$
$$k \cdot t_{1/2} = \ln 2 = 0.693$$

If the rate constant of decomposition of N_2O_5 at 25 °C is 3.7×10^{-5} 1/sec, please calculate the time need for the concentration of N_2O_5 to fall to

- One-half
- 15 % of its original value
- One-nineth $t_{1/9} = 59384.45 \text{ sec}$

Using integrated Rate Law to determine the reaction order

When cyclopropane, C_3H_6 , is heated to 500°C, it changes into an isomer, propene, C_3H_6 . The data in the accompanying table show the concentration of cyclopropane at a series of times after the start of the reaction. Please confirm that the reaction is first order in C_3H_6 and calculate the rate constant.

t (min)	$[C_{3}H_{6}](M)$	$\ln[C_3H_6]$
0	0.0015	-6.50229
6	0.00124	-6.69264
10	0.00100	-6.90776
15	0.00083	-7.09408

$$\ln[A]_t - \ln[A]_0 = -kt$$
$$[A]_t = [A]_0 e^{-kt}$$

Reaction Mechanisms

$CH_3Br + OH^- \rightarrow CH_3OH + Br^-$

$(CH_3)_3 CBr + OH^- \rightarrow (CH_3)_3 COH + Br^-$

$$k[CH_3Br][OH^-]$$

Why?

How to propose a reasonable mechanism?

- The sum of **elementary steps** must give the overall balanced equation
- The mechanism must agree with the **experimentally determined rate law**

Elementary Steps (<mark>Molecularity</mark>)		<u>Reaction involve single elementary steps</u>	
Unimolecular reaction:	$O_3 \rightarrow O_2 + O$	$A \rightarrow \text{products}$ rate = k[A]	
Bi molecular reaction:	$O_3 + O_3 \rightarrow O_2 + O_2 + O_2$	$A+A \rightarrow products$ rate = k[A] ² A+B $\rightarrow products$ rate = k[A][B]	
Termolecular reaction:	$O_2 + O_2 + O_2 \rightarrow O_3 + O_3$	A+A+A \rightarrow products rate = k[A] ³ A+A+B \rightarrow products rate = k[A] ² [B]	

<u>Reaction involve multi-elementary steps: use <u>Rate Determining Step</u> to write the rate law</u>

$$2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$$

Step 1: 2
$$N_2O_5 \rightleftharpoons 2NO_2 + 2NO_3$$
(fast)Step 2: $NO_2 + NO_3 \rightarrow NO + O_2 + NO_2$ (slow)Step 3: $NO_3 + NO \rightarrow 2NO_2$ (fast)

Reactant: Product: Intermediate: • The gas-phase decomposition of N₂O is believed to occur via two elementary steps:

Step 1 : $N_2 O \xrightarrow{k_1} N_2 + O$ Step 2 : $N_2 O + O \xrightarrow{k_2} N_2 + O_2$

- Experimentally, the rate law is found to be rate= $k[N_2O]$
- a) Write the equation for the overall reaction.
- b) Identify the intermediates.
- c) What can you say about the relative rates of steps 1 and 2?

- Under certain conditions, the experimental rate law for the gas-phase reaction of molecular hydrogen with molecular bromine
 - $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$
- is given by rate = $rate = k[H_2][Br_2]^{1/2}$
- Show that the unusual half-reaction order for Br_2 can be explained by the following mechanism:

Step 1 : $Br_2 \xrightarrow[k_{-1}]{k_2} 2Br$ (rapid equilibrium)Step 2 : $Br + H_2 \xrightarrow{k_2} HBr + H$ (slow)Step 3 : $H + Br_2 \xrightarrow{k_3} HBr + Br$ (fast)

Other players for chemical kinetics

The Arrhenius Equation

Higher temperature \rightarrow faster reaction rates (faster moving molecule)

$$CH_3NC \rightarrow CH_3CN$$

 $\mathbf{1}^{st}$ order kinetics

- Double [CH₃NC], double the rate
- Rate = k[CH₃NC]

A = frequency factor

 E_a = activation energy (J/mol)

 $R = \text{gas constant} (8.3145 \text{ J/K} \cdot \text{mol})$

T = temperature (in K)


```
Exponential Factor:
```

• Function of reactant molecules with sufficient energy to react

Frequency Factor:

 $k = A e^{-\frac{E_a}{RT}}$

- The number of approaches to the activation barrier per second
- The number of reaction attempts per second

Unimolecular:

One molecule involved,

Frequency Factor depends on the rate of those specific molecular vibrations that are favorable for chemical reaction

<u>Bimolecular</u>:

Two molecule involved,

Frequency Factor depends on the rate at which 'favorable collision' occur.

A = pz

z = collision frequency *p* = orientation factor

$$2HCI \rightarrow H_2 + CI_2$$

 $HCI \rightarrow \leftarrow HCI$

(improper orientation) unfavorable

EX: Given the following kinetic data for the chemical reaction, $CH_3NC \rightarrow CH_3CN$, find E_a and A

<i>Т</i> (К)	<i>k</i> (s ⁻¹)		1/T	ln <i>k</i>
450	6.8 x 10 ⁻⁶	$k = Ae^{-E_a/R}$	0.00222	-11.9
475	6.5 x 10 ⁻⁵		0.00211	-9.64
500	5.6 x 10 ⁻⁴	$\ln k = \ln A - \frac{L_a}{d}$	0.00200	-7.49
525	3.1 x 10 ⁻³	RT	0.00191	-5.78

$$k = Ae^{-E_a/RT}$$
$$\ln k = \ln A - \frac{E_a}{RT}$$

The rate constant of a first-order reaction is $3.46 \times 10^{-2} s^{-1}$ at 298 K. What is the rate constant at 350 K if the activation energy for the reaction is 50.2 kJ/mol?

Catalyst

- A substance that speeds up a reaction without **being consumed itself**.
- Provides a new pathway for the reaction with a lower **activation energy**.

Effect of a Catalyst on the Number of Reaction-Producing Collisions

Heterogeneous Catalyst

Homogeneous Catalyst

- Exists in the same phase as the reacting molecules.
- Enzymes are nature's catalysts.