Solutions

of two or more substances in <u>one</u> phase A solution is a H_2O Salt water Solute : abundant The is dissolved in the Sugar water H_2O Solvent : abundant Air **Not Solutions** Brass Cu Cement Heterogeneous solution Al_2O_3 Mud water Ruby

Solutions Solvent Solute Phase Liquid $CH_{12}H_{22}O_{11}$ **O**₂ Gas Zn Solid

Aqueous Solutions: Water solvent

Dissolved ions (NaCl)

Dissolved molecules (sugar)

Electrolyte solution

Nonelectrolyte solution

Dilute solution

Concentrated solution

How much solute is dissolved ?

* Temperature dependent*

Molarity (M)

M =

EX. Find the molarity if 5.22 g NaCl is dissolved in enough water to form 125 ml solution

<u>Normality (N)</u> =

EX. Find the normality of 3.75 $M H_2 SO_{4(aq)}$

Acid-base Oxidation-reduction

EX. Find the equivalent mass of $1 M MnO_{4(aq)}^{-}$

$$MnO_4^- + 5 e^- + 8 H^+ \rightarrow Mn^{2+} + H_2O$$

Mass percent

Mole fraction (χ_A)

 χ_{A} =

EX. Find the mole fraction of KBr if 7.31 g KBr is mixed with 50.0 g water

<u>Molality (*m*)</u>

m =

EX. Find the molality of 10.5 g KBr is dissolved in 212 g of water

Converting Concentrations

Solution Formation

if no other forces are involved

Energetics of Solution Formation

Solution Formation

Solution process			$\Delta H_{ m solution}$ (kJ/mol)	
КОН	$\xrightarrow{H_2O}$	$K^+_{(aq)}$ + $OH^{(aq)}$	-57.61	Heat released, Temperature 个
AgNO ₃	$\xrightarrow{H_2O}$	$Ag^+_{(aq)}$ + $NO^{3(aq)}$	36.91	Heat absorbed, Temperature \downarrow
$C_{12}H_{22}O_{11}$	$\xrightarrow{H_2O}$	$C_{12}H_{22}O_{11(aq)}$	6.09	Heat absorbed, Temperature \downarrow

Q1: What makes $\Delta H_{\text{solution}} > 0$?

Strong and interactions
 which outweigh the weak interactions

Q2: If the interactions are so strong, what causes them to break so the solution can form?

from the surrounding provides the energy needed to break the interactions. is always a preferred process.

<u>Solubility</u>

Solubility is the of solute that dissolves in a given amount of solvent.

Thought experiment : add too much salt to water

A **super-saturated** solution has more than the max amount of solute dissolved.

<u>Q</u>: How is a supersaturated solution made?

EX. The solubility of sucrose in water $\chi(25^{\circ}C) = 0.1$, and $\chi(100^{\circ}C) = 0.2$. Boil together 9.0 mole H₂O and 2.0 mole sucrose

 $NaCl_{(s)} \rightarrow NaCl_{(aq)}$

NaCl_(s) NaCl_(aq) un-saturated

 $\chi = 2/(9+2)$ = 0.18 < 0.2 Unsaturated

 χ = 0.18 > 0.1 Super-saturated

 $\chi = 0.1 > 0.1$ saturated

Factors affecting solubility

Like-dissolve-Like

<u>Liquid-Liquid</u>

Hydrophilic vs hydrophobic

Ex: H₂O and CH₃CH₂OH (yes)

<u>Solid-Liquid</u>

polar solid usually dissolve in waternonpolar solid usually do not dissolve in water

```
Ex: H_2O and CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_3 ( )
```

 $Ex: C_6H_{12}O_6$

Ex: H_2O and $CH_3CH_2CH_2CH_2CH_2CH_2CH_2OH$ () Ex: I_2

Factors affecting solubility

Temperature

The solubility of most **solids** (in water) with temperature.

The solubility of most gases (in water) with temperature.

Factors affecting solubility

Pressure

The solubility of a gas in a liquid as its partial pressure above increase.

<u>Henry's Law</u>: $C_g = k_H P_g$

 C_{g} = concentration of dissolved gas

 $k_{\rm H}$ = constant

 P_{g} =partial pressure of gas solute above the solution

EX. What pressure of CO_2 is required to keep concentration of CO_2 in a bottle of root beer at 0.13 *M*?

Colligative Properties

Properties of solutions that depend on the of dissolved particles and not the type

<u>1. Vapor Pressure Lowering</u>

Thought experiment : Pour water in a flask and cork it.

 $\mathrm{H_2O_{(I)}} \xrightarrow{} \mathrm{H_2O_{(g)}}$

Note: Evaporation occurs at the **surface** at any **temperature**

 $H_2O_{(I)} \rightarrow H_2O_{(g)}$

Properties of

properties of solvents.

 $H_2O_{(I)} \rightarrow H_2O_{(g)}$ $R_{vap} = R_{condensation}$ Dynamic Equilibrium

12 Torr Only 1/2 surface exposed Ex: Find the vapor pressure above a solution of 1.0 mol glucose ($C_6H_{12}O_6$) dissolved in 9.0 mol H_2O at 25 °C.

<u>Raoult's Law</u>: $P_{soln} = \chi_{solv} P_{solv}^{\circ}$

are different than

 P_{soln} = vapor pressure of solution χ_{solv} = mole fraction of solvent P_{solv}° = vapor pressure of pure solvent

Why ??

particles get in the way !!!

<u>Raoult's Law</u>: $P_{soln} = \chi_{solv} P^{\circ}_{solv}$

Volatile Solute

If the solute has a significant vapor pressure, then it must also be accounted for.

Ex: Find the total vapor pressure above a solution that contains f 1.0 mol CH_3CH_2OH and 1.0 mol H_2O at 25°C. $P_{EtOH}^{\circ} = 44.6$ Torr and $P_{H2O}^{\circ} = 23.9$ Torr

2. Boiling Point Elevation

Recall: The B.P. is the temperature at which $P_{vap} = P_{1atm}$.

3. Freezing Point Depression

- - - - - ---

	TABLE 13.4 Molal Boiling-Point-Elevation and								
	Freezing-Point-Depression Constants								
		Normal		Normal					
		Boiling	K _b	Freezing	Kf				
	Solvent	Point (°C)	(°Č/ <i>m</i>)	Point (°C)	(°C/m)				
	Water, H ₂ O	100.0	0.52	0.0	1.86				
	Benzene, C ₆ H ₆	80.1	2.53	5.5	5.12				
	Ethanol, C2H5OH	78.4	1.22	-114.6	1.99				
	Carbon tetrachloride, CCl4	76.8	5.02	-22.3	29.8				
Chloroform, CHCl3		61.2	3.63	-63.5	4.68				

<u>4. Osmotic Pressure</u>

Solute particles move around and exert pressure just like gas molecule

Ex: A solution containing 35.0 g hemoglobin dissolved in water to from 1.00 L solution exerts an osmatic pressure of 10.0 Torr at 25 °C. Find the molar mass of hemoglobin.

<u>4. Osmotic Pressure applications</u>

- 1. Medical solutions
- 2. Water movement up tree trunk
- 3. Water purification
- 4. Making a pickle

van't Hoff factor, i

Expected and Observed Values of the van't Hoff Factor for 0.05 *m* Solutions of Several Electrolytes

Electrolyte	i (expected)	i (observed)
NaC1	2.0	1.9
MgCl ₂	3.0	2.7
MgSO ₄	2.0	1.3
FeC1 ₃	4.0	3.4
HC1	2.0	1.9
Glucose*	1.0	1.0

*A nonelectrolyte shown for comparison.

Ex: Find the B.P of 0.9 *m* FeCl_{3(aq)}

Colloids

- A suspension of tiny particles in some medium.
- Tyndall effect scattering of light by particles.
- Suspended particles are single large molecules or aggregates of molecules or ions ranging in size from 1 to 1000 nm.

Examples	Dispersing Medium	Dispersed Substance	Colloid Type
Fog, aerosol sprays	Gas	Liquid	Aerosol
Smoke, airborne bacteria	Gas	Solid	Aerosol
Whipped cream, soap suds	Liquid	Gas	Foam
Milk, mayonnaise	Liquid	Liquid	Emulsion
Paint, clays, gelatin	Solid	Solid	Sol
Marshmallow, polystyrene foam	Solid	Gas	Solid foam
Butter, cheese	Solid	Liquid	Solid emulsion
Ruby glass	Solid	Solid	Solid sol

Table 11.7Types of Colloids

© Cengage Learning. All Rights Reserved.