CH17A

I. Oxidation number (O.N.):

- a. for element (single-atom species), O.N. = 0;
- b. O.N. of a monoatomic ion is the same as its ionic charge, e.g., Na⁺, O.N. of Na = 1
- c. A compound contains O, O.N. (O) is typical "-2", except peroxide(-1), e.g., H₂O₂
 - H is typical "+1", except hydride(-1), e.g., NaH
 - 1A is typical "+1", 2A is typical "+2"
 - 6A is typical "-2", 7A is typical "-1"
- d. The Sum of the O.N. must be zero for electrically neutral compounds or
 - the charge of the ion

II. Redox reaction

- a. LORA: Lost e-, Oxidation, Reductant, Anode, (-)
 - GROC: Gain e-, Reduction, Oxidant, Cathode, (+)
- b. Balancing redox reactions: (1) 2 half reactions
 - (2) balance atoms (acidic: H^+/H_2O , basic: $H_2O/2OH^-$)
 - (3) balance charges by e⁻
 - (4) add 2 half reactions with the same e^{-} gain and lost.

III. Electrochemical cells: Galvanic/Voltaic cells ($E_{cell} > 0$)

- a. $E_{cell} > 0$
- b. intensive property, does not affected by the coefficient
- c. $E_{cell} = E_{cathode} + E_{anode} = E^{0}(red) + E^{0}(oxi)$
- d. Larger E⁰, stronger oxidant; smaller E⁰, stronger reductant
- e. cell notation: anode || cathode, e.g., $Zn_{(s)}|Zn^{2+}|| Cu^{2+}|Cu_{(s)}|$
 - if reactants are all solution or gas, use <u>Pt or C</u> to serve as electrode
- f. structure of a Galvanic cells and $e^{\text{-}}$ flow

CH17A

17.I and II

1. Balance the following equation in basic solution using the lowest possible integers and give the coefficient of hydroxide ion. $MnO_4^{-}(aq) + C_2O_4^{2-} \rightarrow MnO_2(s) + CO_3^{2-}(aq)$ [4]

2. Balance the following equation in acidic solution using the lowest possible integers and give the coefficient of H⁺. $Cl_2(aq) + H_2S(aq) \rightarrow S + Cl^{-}(aq)$ [2]

3. Balance the following equation in basic solution using the lowest possible integers and give the coefficient of OH⁻. Ag(s) + $CN^{-}(aq) + O_2(g) \rightarrow Ag(CN)_2^{-}(aq) + OH^{-}(aq)$ [4]

4. Balance the following equation in acidic solution using the lowest possible integers and give the coefficient of H_2O . $Cu(s) + HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + NO_2 + H_2O(aq)$ [2] 5. Balance the following equation in acidic solution using the lowest possible integers and give the coefficient of H_2O . NaCl(s) + $H_2SO_4(aq) + MnO_2 \rightarrow Na_2SO_4(aq) + MnCl_2 + H_2O(aq) + Cl_2$ [2]

6. Balance the following equation in basic solution using the lowest possible integers and give the coefficient of H_2O . CrO4²⁻(aq) + Cu(s) \rightarrow Cr(OH)₃(s) + Cu(OH)₂(aq) [8]

7. Identify the oxidizing agent and the reducing agent in the reaction. $NO_3^-(aq) + 4Zn(s) + 7OH^-(aq) + 6H_2O(I) \rightarrow 4Zn(OH)_4^{2-}(aq) + NH_3(aq)$

- 17.III
 - 8. Determine E_{cell} for the following reaction, using the given standard reduction potentials: [1.4]

 $Ni^{2+}(aq) + Ti(s) \rightarrow Ni(s) + Ti^{2+}(aq)$, E^{o} for $Ti^{2+}(aq) = -1.63 V$, E^{o} for $Ni^{2+}(aq) = -0.23 V$ Assume X is Ti(s), specify Y,Z,S,T, and direction of electron flow.

9. Consider the following half-reactions. Which of these is the strongest reducing agent listed here? [**Cr(s)**] $Au^+(aq) + e^- \rightarrow Au(s) E^\circ = 1.69 V$ $N_2O(g) + 2 H^+(aq) + 2 e^- \rightarrow N_2(g) + H_2O(I) E^\circ = 1.77 V$ $Cr^{3+}(aq) + 3 e^- \rightarrow Cr(s) E^\circ = -0.74 V$