CH16

- I. Amplitude of entropy S:
 - a. $S_{g} >> S_{l} > S_{s}$

b. for a reaction, the side with larger total # of mole of gas molecule has larger S c. complicated molecule (more atoms) has higher S

II. Spontaneous process: $\Delta S_{universe} > 0$, $\Delta G < 0$

a. $\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surrounding}} = \Delta S_{\text{system}} - \Delta H/T \rightarrow -T \Delta S_{\text{universe}} = -T \Delta S_{\text{system}} + \Delta H$ b. $\Delta G = \Delta H - T\Delta S$ c. calculate ΔG , ΔH , and ΔS for a chemical reaction

III. $\Delta G, \Delta G^0, K \text{ and } Q$:

a. $\Delta G^0 = - \operatorname{RTIn} K$				
b. $\Delta G = \Delta G^0 + RTInQ = -RTInK + RTInQ$				
c. ∆ <i>G</i> ⁰ > 0, K<1;	ΔG^0 = 0, K = 1;	$\Delta G^0 < 0, \mathrm{K} > 1;$		
d. ∆ <i>G</i> > 0, Q>K;	ΔG = 0, Q = K;	ΔG < 0, Q < K;		

CH16

16.I

Which one has larger entropy?
1 mole of HCl(g) vs 1 mole of HBr(g); CH₃OH(I) + 3/2 O₂(g) => CO₂(g) + 2 H₂O(g); 1 mole of NO₂(g) vs 1 mole of N₂O₄(g)

16.II

2. For the combustion of acetylene at 298.15 K, $2 C_2H_2(g) + 5 O_2(g) --> 4 CO_2(g) + 2 H_2O(g)$ calculate $\Delta S^{\circ}(universe)$ given $\Delta S^{\circ}(system) = -194.6 J/K$ and $\Delta H^{\circ}(system) = -2511.2 kJ.$ [+8228.0 J/K] can you do 1mole C_2H_2 ?

3. Use the table below to answer the question that follows.

Thermodynamic Quantities for Selected Substances at 298.15 K (25 $^{\circ}\mathrm{C})$

Substance	∆H°f (kJ/mol)	∆G°f (kJ/mol)	S (J/K-mol)
Carbon			
C (s, diamond)	1.88	2.84	2.43
C (s, graphite)	0	0	5.69
C ₂ H ₂ (g)	226.7	209.2	200.8
C2H4 (g)	5230	68.11	219.4
C ₂ H ₆ (g)	-84.68	-32.89	229.5
CO (g)	-110.5	-137.2	197.9
CO ₂ (g)	-393.5	-394.4	213.6
Hydrogen			
H ₂ (g)	0	0	130.58
Oxygen			
O ₂ (g)	0	0	205.0
H ₂ O (1)	-285.83	-237.13	69.91

The combustion of hydrogen in the presence of excess oxygen yields water:

 $2H_2(g) + O_2(g) --> 2H_2O(I)$

The value of ΔS° for this reaction is _____J/K mol. [-326.3]

The value of ΔG° for this reaction is _____KJ/ mol. [-474.26]

The value of ΔH° for this reaction is _____KJ/ mol. [-571.66]

4. A particular reaction has a ΔH° value of -10 kJ and ΔS° of -500 J/mol K at 298 K. Assuming that ΔH° and ΔS° hardly change with temperature, determine the temperature in °C at which the spontaneity of this reaction changes. [-253 °C]

5. A particular reaction has a ΔH° value of 3 kJ and ΔS° of 10 J/mol K at 298 K. Assuming that ΔH° and ΔS° hardly change with temperature, determine the temperature in °C at which the spontaneity of this reaction changes. [27]

6. Given the following data, $2NO(g) + O_2(g) \Rightarrow 2NO_2 (g) \Delta G^\circ = -73 J$ $N_2(g) + O_2(g) \Rightarrow 2NO(g) \Delta G^\circ = 178 J$ $2N_2O(g) \Rightarrow 2N_2 + O_2(g) \Delta G^\circ = -202 J$ Determine ΔG_f° for $N_2O(g) + NO_2(g) \Rightarrow 3NO(g)$ [113.5 J]

7. Given the following data,

$$\begin{split} & 2H_2(g) + O_2(g) => 2H_2O(g) \ \Delta G^\circ = -579 \ J \\ & C_3H_4(g) + 4O_2(g) => 3CO_2 + 2H_2O(g) \ \Delta G^\circ = -1936 \ J \\ & C_3H_8(g) + 5O_2(g) => 3CO_2 + 4H_2O(g) \ \Delta G^\circ = -2210 \ J \\ & \text{Determine} \ \Delta G_f^\circ \ \text{for} \ C_3H_4(g) + 2H_2(g) => C_3H_8(g) \ [-305 \ J] \end{split}$$

16.III

At 250 K, ΔG° equals 4.157 kJ for the reaction, N₂(g) + 3 H₂(g) <=> 2 NH₃ (g). Calculate the value of InK for the reaction at this temperature to one decimal place. [-2]

9. The value of ΔG° for the reaction, N₂(g) + 3 H₂(g) <=> 2 NH₃(g) is -32.90 kJ at 298 K. Calculate the value of ΔG in kJ at 298 K if the partial pressures of N₂, H₂ and NH₃ are 0.5, 1, and 2 atm respectively. [-27.748 kJ]

10. What is ΔG for N₂ + 3H₂ $\leftarrow \rightarrow$ 2NH₃ under the given conditions at 400K? Will the reaction go toward products, reactants or is it at equilibrium? P_{N2} = 4.2 bar, P_{H2} = 1.8 bar, P_{NH3} = 21 bar, K(400K) = 41. [-**21.9 kJ**]