CH15

I. Calculate solubility from K_{sp} or K_{sp} from solubility (molar solubility * FW = gram solubility), only use molar solubility for calculations.

II. $Q_{sp} > K_{sp}$, ppt form; $Q_{sp} < K_{sp}$, no ppt

III. pH effect on solubility:

Anion of the salt	Acid solution	Base solution
OH ⁻	Solubility increase	Solubility decrease
Conjugated base of weak acid	Solubility increase	No effect
Conjugated base of strong acid	No effect	No effect

IV. common ion effect calculation: always use small x approximation

CH15

15.I

1. The solubility of silver dichromate at a given temperature is 5 g/100 mL. Calculate the K_{sp} at this temperature. After you calculate the K_{sp} value, take the negative log and enter the (pK_{sp}) value with 2 decimal places. (value ± 0.05). (2.2069)

15.II

- 2. The K_{sp} of AgCl at 25 °C is 1.6 x 10⁻¹⁰. Consider a solution that is 1.0 x 10⁻⁷ M CaCl₂ and 1.0 x 10⁻³ M AgNO₃. **A**. $Q > K_{sp}$ and a precipitate will form.
 - B. $Q > K_{sp}$ and a precipitate will not form.
 - C. $Q < K_{sp}$ and a precipitate will not form.
 - D. $Q < K_{sp}$ and a precipitate will form.
 - E. The solution is saturated.

15.III

- 3. Which of the following compounds will have a different solubility with lower pH?
 - a. AgNO₃ b. CaCl₂ c. Ca(OH)₂ d. CuCl e. BaCrO₄

15.IV

4. The K_{sp} of Al(OH)₃ is 1.0 x 10⁻³³. What is the solubility of Al(OH)₃ in 0.010 M Al(NO₃)₃? Give your answer using scientific notation and to 2 significant figures (i.e., one decimal place). (**1.6*10⁻¹¹**).