CH14

I. pH and % dissociation calculation of acid, base, and salt, buffer -- Check out pH calculaion summary in CH13

II. Tiration: pH = -log([H₃O⁺]); pOH = -log([OH⁻]); pH = 14-pOH = 14+log([OH⁻])

	Strong acid				Strong base			
Strong acid (SA)								
Strong base (SB)								
Weak acid (WA)								
Weak base (WA)								

Titration curve

Calculation

Zone	T/A: SB/SA T/A: SA/SB		T/A: SB/WA	T/A: SA/WB	
1	$[H_3O^+] = [HA]_0$	[OH ⁻] = [BOH] ₀	$[H_3O^+] = \sqrt{[HA]_0 \times K_a}$	$[OH^{-}] = \sqrt{[BOH]_{0} \times K_{b}}$	
2	$[H_3O^+] = \frac{(C \times V)_{HA} - (C \times V)_{BOH}}{V_{HA} + V_{BOH}}$	$[OH^{-}] = \frac{(C \times V)_{BOH} - (C \times V)_{HA}}{V_{HA} + V_{BOH}}$	$[H_3O^+] = K_a \frac{[HA]_{eq}}{[A^-]_{eq}}$		
3	рН	= 7	$[OH^{-}] = \sqrt{[A^{-}]_{0} \times K_{b}}$	$[H_3O^+] = \sqrt{[B^+]_0 \times K_a}$	
4	$[OH^{-}] = \frac{(C \times V)_{BOH} - (C \times V)_{HA}}{V_{HA} + V_{BOH}}$	$[H_3O^+] = \frac{(C \times V)_{HA} - (C \times V)_{BOH}}{V_{HA} + V_{BOH}}$	$[OH^{-}] = \frac{(C \times V)_{BOH} - (C \times V)_{HA}}{V_{HA} + V_{BOH}}$	$[H_3O^+] = \frac{(C \times V)_{HA} - (C \times V)_{BOH}}{V_{HA} + V_{BOH}}$	

III. Acid-base indicator: use pH at e.p. to choose the proper indicator or BMOMR, SBBPR, APPAY

indicator	Acid color	Base color	pH (color changing)	Good for	
Methyl orange	Red	Yellow	3.2-4.4	Strong acid (titrant) + weak base (<u>analyte</u>)	
Methyl red	Red	Yellow	4.2-6.5		
Bromthymole blue	Yellow	Blue	6.0-7.6	Strong acid + Strong base (titrant or <u>analyte</u>)	
Phenol red	Yellow	Red	6.8-8.4		
Phenolphthalein	Colorless	Red	8.2-10.0	Strong base (titrant) +	
Alizarin Yellow Yellow		Red	10.1-12.0	weak acid (<u>analyte</u>)	

CH14

14.I

1. Calculate the pH when 0.99 g of C_6H_5COONa (FW = 144.1 g/mol) is added to 32 mL of 0.50 *M* benzoic acid, C_6H_5COOH (FW = 122.1 g/mol). Ignore any changes in volume. The K_a value for C_6H_5COOH is 6.5 x 10⁻⁵. (**3.82**)

2. A buffer consists of 0.49 *M* KHCO₃ and 0.42 *M* K₂CO₃. Given that the *K* values for H₂CO₃ are, $K_{a1} = 4.5 \times 10^{-7}$ and $K_{a2} = 4.7 \times 10^{-11}$, calculate the pH for this buffer. (**10.26**)

14.II

3. Determine the volume in mL of 0.551 *M* HBr_{(aq}) needed to reach the half-equivalence (stoichiometric) point in the titration of 44.37 mL of 0.703 *M* NH_{3(aq)}. The K_b of ammonia is 1.8 x 10⁻⁵. (28.2)

4. Determine the pH at the equivalence (stoichiometric) point in the titration of 30.77 mL of 0.116 M morphine(aq) with 0.231 M HCl_(aq). The K_b of morphine is 1.6 x 10⁻⁶. (**4.66**)

5. A buffer that contains 0.15 *M* of an acid, HA and 0.27 *M* of its conjugate base A⁻, has a pH of 4.83. What is the pH after 0.021 mol of NaOH are added to 0.79 L of the solution? (**4.94**)

6. The pH of 0.50 *M* acetic acid is 2.52. Calculate the change in pH when 1.59 g of CH₃COONa (FW = 82.03 g/mol) is added to 49.9 mL of 0.50 *M* acetic acid, CH₃COOH. Ignore any changes in volume. The K_a value for CH₃COOH is 1.8 x 10⁻⁵. (2.12)

14.III

- 7. Which indicator would be the best to use for a titration between 0.30 M NH₄Cl with 0.30 M KOH? You will probably need to consult the appropriate table in the book.
 - A. phenol red, color change at pH 6-8
 - B. bromothymol blue, color change at pH 6-8
 - C. methyl red, color change at pH 2-4
 - **D**. alizarin yellow R, color change at pH 10-12
 - E. thymol blue, color change at pH 8-10