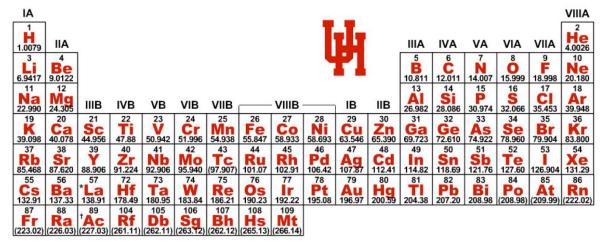
CH13

I. Conjugated acid of species A will be Conjugated base of species HA will be

```
A + H^+ = HA^+
HA - H<sup>+</sup> = A<sup>-</sup>
```


Relative acid/base strength(4 rules):

a. most acid/base are weaker acid/base

b. periodic table rules: stronger bases at the bottom left corner stronger acids at the bottom right corner

c. strong acids: HI,HBr,HClO₄, HCl, HClO₃, H₂SO₄,HNO₃ strong bases: IA, IIA oxide (e.g., MgO) and hydroxides (NaOH)

d. oxy acid (the same central atom): larger #O-#H, more acidic

II. Acid-base properties of salt:

a. conjugated base (acid) of a strong acid (base): Neutralb. conjugated base (anion) of a weak acid: Basicc. conjugated acid (cation) of a weak base: Acidic

III. pH and % dissociation calculation of acid, base, and salt

pH calculation summary

 $K_a \times K_b = K_W$

$- n_a \wedge n_b - n_W$							
				рН	% dissociation		
Strong acid	$HA + H_2O \rightarrow H_3O^+ + A^-$	$K_a = \frac{[H_3O^+][A^-]}{[HA]_0}$	$[H_3O^+] = [HA]_0$	-log([HA] ₀)	100%		
Weak acid			$[H_{3}O^{+}] = \sqrt{[HA]_{0} xK_{a}}$	$-\log(\sqrt{[HA]_0 xK_a})$	$\sqrt{\frac{K_a}{[HA]_0}}$		
	Biprotic acid (H ₂ A)	K _{a1} , K _{a2}	$[H_{3}O^{+}] = [HA^{-}] = \sqrt{[HA]_{0} x K_{a1}}$ $[A^{2-}] = K_{a2}$	$-\log(\sqrt{[HA]_0 x K_a})$	$\sqrt{\frac{K_a}{[HA]_0}}$		
Strong base	$BOH + H_2O \rightarrow OH^- + B^+$	$K_{b} = \frac{[B^{+}][OH^{-}]}{[BOH]_{0}}$	[OH ⁻] = [BOH] ₀	14 + log([BOH] ₀)	100%		
Weak base			$[OH^{-}] = \sqrt{[BOH]_0 \times K_b}$	14 +log($\sqrt{[BOH]_0 x K_b}$)	$\sqrt{\frac{K_{b}}{[BOH]_{0}}}$		
buffer	HA/A-			pH = pKa –log (<mark>[HA]₀</mark>)			
	Add in acid	$H_{3}O^{+} + A^{-} \rightarrow HA$	Recal [HA] _{new} [A ⁻] _{new}	$pH = pKa - log \left(\frac{[HA]_{new}}{[A^-]_{now}}\right)$			
	Add in base	$OH^- + HA \rightarrow A^-$		([A-] _{new})			

CH13

- 13.I
 - 1. Classify NH₃, CH₃CH₂CH₂NH₂, H₃AsO₄, RbOH, HClO₄.

2. Consider the reaction shown. Using your knowledge of relative acid-base strengths and equilibrium, determine what you can about the size of K_c for the reaction. H₃SbO₃(aq) + HTeO₃(aq) \rightleftharpoons H₂SbO₃(aq) + H₂TeO₃(aq) K_c<1

13.II

3.	Is an aqueous solution of NaNO₃ acidic, basic or neutral (use A, B or N)?		
	Is an aqueous solution of NaCH ₃ COO acidic, basic or neutral (use A, B or N)?	В	
	Is an aqueous solution of $C_2H_5NH_3Br$ acidic, basic or neutral (use A, B or N)?	А	

13.III

4. Calculate the pH of a 0.60 M solution of ethylamine($C_2H_5NH_2$, $K_b = 5.6 \times 10^{-4}$.)

5. Calculate the pH of a 0.100 M solution of ascorbic acid, for which the K_a value is 1.00 x 10⁻⁵. **3.0**

6. What is the pH of 0.269 Methylammonium chloride, $C_2H_5NH_3Cl$. The K_b of ethylamine, $C_2H_5NH_2$, is 4.3 x 10⁻⁴. **5.6**