Ch.12

I. Chemical quotient:

 $aA + bB \rightarrow cC + dD$

$$\boldsymbol{Q} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Q>*K*, move to reactant *Q*<*K*, move to product

 K_c (use mole/L for [A], [B], [C], and [D]) K_p (use atm for P_A , P_B , P_C , and P_d)

 $K_{\rm p} = K_{\rm c} * (RT)^{\Delta n}$, $\Delta n = (c+d)-(a+b)$, R = 0.08206 L*atm/(K*mol)

II. Equilibrium constant calculation:

Combine two equations (K_1 and K_2), $K_{new} = K_1 \times K_2$

III. ICE table (small *x* approximation):

 $K>10^4$ or $K<10^{-4}$, small x approximation, otherwise $x = (-b + /- \operatorname{sqrt}(b^2 - 4ac))/2a$

IV. Le Chatelier's principle: predict how the reaction direction is affected by 1. Concentration, 2.pressure, and 3. Temperature (catalyst)

Ch 12

12.I

 Consider the gas-phase reaction, Cl₂(g) + Br₂(g) <=> 2 BrCl(g), for which K_p = 32 at 500 K. If the mixture is analyzed and found to contain 0.49 bar of Cl₂, 0.29 bar of Br₂ and 2.1 bar of BrCl, describe the situation: [Q < K and more products will be made to reach equilibrium]

12.II

 At a certain temperature, K_p is 0.25 for the reaction, H₂(g) + Br₂(g) <=> 2 HBr(g). Calculate the value of K_p for the reaction, HBr(g) <=> 1/2 H₂(g) + 1/2 Br₂(g)
[2]
Given the values of K shown below, determine the value of K for the reaction, N₂(g) + 2 O₂(g) <=> 2 NO₂(g). N₂(g) + O₂(g) <=> 2 NO(g) K₁ = 2 NO₂(g) <=> NO + 1/2 O₂(g) K₂ = 3 Give your answer to the 4 decimal places.

[0.2222]

12.III

- At 700 K, the reaction below has a K_p value of 54. An equilibrium mixture at this temperature was found to contain 0.5 atm each of H₂ and I₂. Calculate the pressure of HI at equilibrium. H₂(g) + I₂(g) <=> 2 HI(g). Use 2 decimal places. [3.68]
- 5. At a given temperature, 2 atm of H₂ and 1 atm of I₂ are mixed and allowed to come to equilibrium. The equilibrium pressure of HI is found to be 1 atm. Calculate K_p for the reaction at this temperature. H₂(g) + I₂(g) <=> 2 HI(g). Give your answer to 3 decimal places. [1.333]
- In the reaction below, 0.5 atm each of H₂ and Br₂ were placed into a 1.00 L flask and allowed to react: H₂(g) + Br₂(g) <=> 2 HBr(g) Given that K_c = 4, calculate the equilibrium pressure of HBr.[**0.5**]

12.IV

7. Consider the reaction $N_2(g) + 3 H_2(g) \le 2 NH_3(g)$, which is exothermic as written. What would be the effect on the equilibrium position of removing $N_2(g)$? [Reaction would go to the left, making more "reactants"]

Consider the gas-phase reaction, Cl₂(g) + Br₂(g) <=> 2 BrCl(g), for which K_p = 32 at 500 K. If the mixture is analyzed and found to contain 0.49 bar of Cl₂, 0.29 bar of Br₂ and 2.1 bar of BrCl, describe the situation: [Q < K and more products will be made to reach equilibrium]

2. At a certain temperature, K_p is 0.25 for the reaction, $H_2(g) + Br_2(g) \ll 2 HBr(g)$. Calculate the value of K_p for the reaction, $HBr(g) \ll 1/2 H_2(g) + 1/2 Br_2(g)$ [2] 3. Given the values of K shown below, determine the value of K for the reaction, $N_2(g) + 2 O_2(g) \iff 2 NO_2(g)$. $N_2(g) + O_2(g) \iff 2 NO(g)$ $K_1 = 2$ $NO_2(g) \iff NO + 1/2 O_2(g)$ $K_2 = 3$ Give your answer to the 4 decimal places. [0.2222] 4. At 700 K, the reaction below has a K_p value of 54. An equilibrium mixture at this temperature was found to contain 0.5 atm each of H₂ and I₂. Calculate the pressure of HI at equilibrium. H₂(g) + I₂(g) <=> 2 HI(g). Use 2 decimal places. [**3.68**] 5. At a given temperature, 2 atm of H₂ and 1 atm of I₂ are mixed and allowed to come to equilibrium. The equilibrium pressure of HI is found to be 1 atm. Calculate K_p for the reaction at this temperature. H₂(g) + I₂(g) <=> 2 HI(g). Give your answer to 3 decimal places. [1.333] 6. In the reaction below, 0.5 atm each of H₂ and Br₂ were placed into a 1.00 L flask and allowed to react: H₂(g) + Br₂(g) <=> 2 HBr(g) Given that $K_c = 4$, calculate the equilibrium pressure of HBr.[**0.5**] 7. Consider the reaction $N_2(g) + 3 H_2(g) \le 2 NH_3(g)$, which is exothermic as written. What would be the effect on the equilibrium position of removing $N_2(g)$? [Reaction would go to the left, making more "reactants"]