CH11.

I. Chemical reaction and rate:

 $aA + bB \rightarrow cC + dD$

Rate =
$$-\frac{1}{a}\frac{\Delta[A]}{\Delta t} = -\frac{1}{b}\frac{\Delta[B]}{\Delta t} = \frac{1}{c}\frac{\Delta[C]}{\Delta t} = \frac{1}{d}\frac{\Delta[D]}{\Delta t}$$

Integrated rate law:

II. Rate law:

Differential rate law:

Rate =
$$k[A]^{n}[B]^{m}$$
 not $k[A]^{a}[B]^{b}$

$$-\frac{d[A]}{dt} = k \qquad [A]_t = -kt + c$$

Unit of rate constant: 0 order (Ms⁻¹); 1 order (s⁻¹); 2 order (M⁻¹s⁻¹); 3 order (M⁻²s⁻¹)

Table 11-6	Summar	y of the Kinetics fo	or Reactions of th	e Type aA	\rightarrow Products	That Are Ze	ero, First, d	or Second	Order in	[A]
------------	--------	----------------------	--------------------	-----------	------------------------	-------------	---------------	-----------	----------	-----

		Order		
	Zero	First	Second	
Rate law	Rate = k	Rate $= k[A]$	$Rate = k[A]^2$	
Integrated rate law	$[A] = -kt + [A]_0$	$\ln[A] = -kt + \ln[A]_0$	$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$	
Plot needed to give a straight line	[A] versus t	ln[A] versus t	$\frac{1}{[A]}$ versus t	
Relationship of rate constant to the slope of straight line	Slope = $-k$	Slope = -k	Slope = k	
Half-life	$t_{V2} = \frac{[A]_0}{2k}$	$t_{V2} = \frac{0.693}{k}$	$t_{V^2} = \frac{1}{k[A]_0}$	

© 2016 Cengage Learning

III. Reaction mechanism:

elementary steps and rate determine step

- 1. Write out the overall balanced eq. identify the reactants, products, and intermediate
- 2. Write the rate law by using the rate determine step
- 3. If the rate law contains non-reactant, use K_{eq} from other steps to derive the final rate law *if possible*.
- IV. Arrhenius equation: note R = 8.314J/mol, T must use Kelvin not degree C

$$k = Ae^{-\frac{E_a}{RT}}$$
 $ln\frac{k_1}{k_2} = \frac{E_a}{R}(\frac{1}{T_2} - \frac{1}{T_1})$

 $lnk = lnA - \frac{E_a}{RT}$

• Catalyst is the only thing that can change the E_a and only E_a (it does not affect equilibrium).

Ch 10

11.I-II

- 1. What is the reaction order of Br^{-} for a reaction with the following rate law? Rate = $k[BrO_3^{-}][Br^{-}][H^{+}]^2$ [first]
- Consider the reaction with the rate law, Rate = k[BrO₃⁻][Br⁻][H⁺]².
 By what factor does the rate change if the concentration of H⁺ is quadrupled? Just put in the number as a whole number or fraction. [16]
- Given the data below for the reaction, 2 A + 2 B + 4 C => D + E + 3 F, the reaction is [x1] order in A, [x2] order in B, [x3] order in C and [x4] order overall. USE WORDS TO FILL IN THE BLANKS NOT NUMBERS (i.e., zero, first, second etc) !!!!! :

Experiment	Initial conc of A, mol/L	Initial conc of B, mol/L	Initial conc of C, mol/L	Initial rate, mol/L.s
1	0.1	0.2	0.4	2 x 10 ⁻³
2	0.2	0.2	0.4	2 x 10 ⁻³
3	0.3	0.4	0.4	4 x 10 ⁻³
4	0.4	0.6	0.2	1.5 x 10 ⁻³

[zero, first, two, total three]

- 4. The reaction, AB => A(g) + B(g), has a rate law, rate = [AB]². Calculate the rate constant in L/mol·s. If it takes 120 seconds to reach an [AB] of 0.2 mol/L from an initial concentration of 0.8 mol/L. (Enter your answer to 3 decimal places) [(0.031]
- In a first order decomposition in which the rate constant is 0.5 sec⁻¹, how long will it take (in minutes) until 1.6 mol/L of the compound is left, if there was 4 mol/L at the start? Give your answer to 3 decimal places. [0.031]

11.III

6. Consider the reaction, A + B + C => D, which is found to be first order in A and first order in B. Which step of the proposed mechanism must be slow in order to agree with this rate law?

1. A(g) + B(g) => X(g) 2. X(g) + C(g) => Y(g) 3. Y(g) => D(g) [1]

7. For the reaction $NO_2(g) + CO(g) => NO(g) + CO_2(g)$ at temperatures below 500 K, the rate law is rate = $k [NO_2]^2$. Which mechanism is consistent with this information?

Mechanism 1

 $NO_2 + NO_2 => NO_3 + NO slow$ $CO + NO_3 => CO_2 + NO_2 fast$ **Mechanism 2** $NO_2 + NO_2 => NO_3 + NO fast$ $CO + NO_3 => CO_2 + NO_2 slow$ [1]

8. The proposed mechanism for a reaction ClO⁻ + l⁻ <--> IO⁻ + Cl⁻ is: ClO⁻ + H₂O <--> HClO + OH⁻ Fast l⁻ + HClO <--> HIO + Cl⁻ Fast OH⁻ + HIO <--> H₂O + IO⁻ Slow Which of the following would be a rate law for the reaction? [rate = k[ClO⁻][l⁻]/[Cl⁻]]

11.IV

- 9. A first order reaction has an activation energy of 48 kJ/mol and a frequency factor (Arrhenius constant) of 5 x 10¹⁰ sec ⁻¹. Calculate the rate constant at 27 °C. Use the nearest whole number.[**219**]
- 10. A first order reaction has a rant constant of 0.52 s⁻¹ at 34.1 °C. if the activation energy is 63.6kJ, calculate the temperature in °C at which the rate constant is 0.979 s⁻¹.

1. What is the reaction order of Br⁻ for a reaction with the following rate law? Rate = $k[BrO_3^-][Br^-][H^+]^2$ [first]

Consider the reaction with the rate law, Rate = k[BrO₃⁻][H⁺]².
 By what factor does the rate change if the concentration of H⁺ is quadrupled? Just put in the number as a whole number or fraction. [16]

3. Given the data below for the reaction, 2 A + 2 B + 4 C => D + E + 3 F, the reaction is [x1] order in A, [x2] order in B, [x3] order in C and [x4] order overall. USE WORDS TO FILL IN THE BLANKS NOT NUMBERS (i.e., zero, first, second etc) !!!!! :

Experiment	Initial conc of A, mol/L	Initial conc of B, mol/L	Initial conc of C, mol/L	Initial rate, mol/L.s
1	0.1	0.2	0.4	2 x 10 ⁻³
2	0.2	0.2	0.4	2 x 10 ⁻³
3	0.3	0.4	0.4	4 x 10 ⁻³
4	0.4	0.6	0.2	1.5 x 10 ⁻³

[zero, first, first, total two]

4. The reaction, AB => A(g) + B(g), has a rate law, rate = [AB]². Calculate the rate constant in L/mol·s. If it takes 120 seconds to reach an [AB] of 0.2 mol/L from an initial concentration of 0.8 mol/L. (Enter your answer to 3 decimal places) [(0.031]

5. In a first order decomposition in which the rate constant is 0.5 sec⁻¹, how long will it take (in minutes) until 1.6 mol/L of the compound is left, if there was 4 mol/L at the start? Give your answer to 3 decimal places. [**0.031**]

6. Consider the reaction, A + B + C => D, which is found to be first order in A and first order in B. Which step of the proposed mechanism must be slow in order to agree with this rate law?

1. A(g) + B(g) => X(g) 2. X(g) + C(g) => Y(g) 3. Y(g) => D(g) [1] 7. For the reaction $NO_2(g) + CO(g) => NO(g) + CO_2(g)$ at temperatures below 500 K, the rate law is rate = $k [NO_2]^2$. Which mechanism is consistent with this information? Mechanism 1 $NO_2 + NO_2 => NO_3 + NO$ slow $CO + NO_3 => CO_2 + NO_2$ fast Mechanism 2 $NO_2 + NO_2 => NO_3 + NO$ fast $CO + NO_3 => CO_2 + NO_2$ slow [1] 8. The proposed mechanism for a reaction $CIO^- + I^- <--> IO^- + CI^-$ is: $CIO^- + H_2O <--> HCIO + OH^-$ Fast $I^- + HCIO <--> HIO + CI^-$ Fast $OH^- + HIO <--> H_2O + IO^-$ Slow Which of the following would be a rate law for the reaction? [rate = k[CIO^-][I^-]/[CI^-]] 9. A first order reaction has an activation energy of 48 kJ/mol and a frequency factor (Arrhenius constant) of 5 x 10¹⁰ sec ⁻¹. Calculate the rate constant at 27 °C. Use the nearest whole number.[**219**]

10. A first order reaction has a rant constant of 0.52 s⁻¹ at 34.1 °C. if the activation energy is 63.6kJ, calculate the temperature in °C at which the rate constant is 0.979 s⁻¹.