F_MT2

- 1. Given the following values of pK_a and pK_b , select the strongest acid from those listed below. [**HNO**₂] pK_a of HNO₂ = 3.37; pK_b of $C_5H_5N = 8.75$; pK_a of HBrO = 8.69; pK_b of $NH_3 = 4.75$; pK_a of HClO = 7.53;
- 2. What is the [OH⁻] in a solution that has a pH of 12.50? [**3.2E-2**]
- 3. Give the conjugate base of HSO₄⁻. Write it ignoring super and subscripts (so, HPO₄²⁻ would be HPO42-)? [SO42-]
- 4. Calculate the pH of a 0.50 *M* solution of ammonia (NH₃, $K_b = 1.8 \times 10^{-5}$). [**11.48**]
- 5. At a certain temperature, the percent dissociation (ionization) of chlorous acid, $HClO_2$, in a 1.63 *M* solution water is 10.0%. Calculate the value of K_a for chlorous acid at this temperature. [**1.63E-2**]
- 6. What is the pH of a solution prepared by mixing 50.00 mL of 0.10 *M* NH₃ with 25.00 mL of 0.10 *M* NH₄Cl? Assume that the volume of the solutions are additive and that $K_b = 1.8 \times 10^{-5}$ for NH₃. [**9.56**]
- 7. Calculate the pH when 0.68 g of C₆H₅COONa (FW = 144.1 g/mol) is added to 18 mL of 0.50 *M* benzoic acid, C₆H₅COOH (FW = 122.1 g/mol). Ignore any changes in volume. The K_a value for C₆H₅COOH is 6.5 x 10⁻⁵. [**3.91**]
- 8. Calculate the pH of a solution prepared by adding 20.0 mL of 0.100 *M* HCl to 80.0 mL of a buffer that is comprised of 0.25 *M* NH₃ and 0.25 *M* NH₄Cl. K_b of NH₃ = 1.8 x 10⁻⁵. [9.17]
- 9. Determine the volume in mL of 0.781 *M* KOH_(aq) needed to reach the half-equivalence (stoichiometric) point in the titration of 49.8 mL of 0.494 *M* HClO_(aq). The K_a of HClO is 3.0 x 10⁻⁸. [**1.57E1**]
- 10. Aniline $(C_6H_5NH_2)$ has a K_b = 3.8 x 10⁻¹⁰. If 100.0 mL of a 0.5000 *M* aqueous aniline solution is mixed with 100.0 mL of 0.5000 *M* aqueous hydrochloric acid, the resulting solution will have a pH. [**<7**]
- 11. Calculate the pH of a 0.50 *M* solution of sodium acetate (NaCH₃COO). The K_a of acetic acid (CH₃COOH) is 1.8 x 10⁻⁵. [9.22]
- 12. What is the pH of 0.422 *M* methylammonium bromide, CH₃NH₃Br? At 25°C, the K_b of CH₃NH₂ is 4.2 x 10⁻⁴? [5.50]
- 13. At 25 °C the solubility of barium carbonate is 9.00 x 10^{-5} mol/L. Calculate the value of K_{sp} at this temperature. [8.1E-9]
- 14. The K_{sp} of AgCl at 25 °C is 1.6 x 10⁻¹⁰. Consider a solution that is 1.0 x 10⁻⁹ *M* in CaCl₂ and 1.0 x 10⁻¹ *M* in AgNO₃.[*Q* > K_{sp} and a precipitate will form]
- 15. One liter of a saturated solution of CaF₂ contains 0.0167 g of dissolved CaF₂ (78.1 g/mol). What is the K_{sp} for CaF₂? [3.91E-11]
- 16. What is the solubility of CaF₂ (assume $K_{sp} = 4.0 \times 10^{-12}$) in 0.035 M NaF? [**3.3E-9**]
- 17. For which salt in each of the following groups will the solubility depend on pH? [i) NaF; ii) Ba(NO₂)₂; iii) Ca(OH)₂; iv) Fe(CN)₂]

i) NaF, NaCl; ii) Ba(NO₃)₂, Ba(NO₂)₂; iii) Ca(OH)₂, CaCl₂; iv) Fe(NO₃)₂, Fe(CN)₂

- 18. The K_{sp} of Ag₂SO₄ is 1.2 x 10⁻⁵. What is the solubility of Ag₂SO₄ (mol/L) in 0.25 *M* AgNO₃? [1.92E-4]
- 19. What is the pH of the resulting solution if 0.01944 mol of methylamine, CH₃NH₂, is added to 0.00351 mol of HCl in 60.0 mL of aqueous solution? Assume that the volume of the solution doesn't change. $CH_3NH_{2(aq)} + HCl_{(aq)} \rightarrow CH_3NH_3^+_{(aq)} + Cl^-_{(aq)}$. The dissociation of $CH_3NH_3^+$ has a $K_a = 2.70 \times 10^{-11}$, with reaction $CH_3NH_3^+_{(aq)} + H_2O_{(l)} \rightleftharpoons CH_3NH_{2(aq)} + H_3O^+_{(aq)}$. [11.23]

1. Given the following values of pK_a and pK_b , select the strongest acid from those listed below. [**HNO**₂] pK_a of HNO₂ = 3.37; pK_b of C_5H_5N = 8.75; pK_a of HBrO = 8.69; pK_b of NH_3 = 4.75; pK_a of HCIO = 7.53;

2. What is the [OH⁻] in a solution that has a pH of 12.50? [**3.2E-2**]

3. Give the conjugate base of HSO₄⁻. Write it ignoring super and subscripts (so, HPO₄²⁻ would be HPO42-)? [**SO42-**]

4. Calculate the pH of a 0.50 *M* solution of ammonia (NH₃, $K_b = 1.8 \times 10^{-5}$). [**11.48**]

5. At a certain temperature, the percent dissociation (ionization) of chlorous acid, $HClO_2$, in a 1.63 *M* solution water is 10.0%. Calculate the value of K_a for chlorous acid at this temperature. [**1.8E-2**]

6. What is the pH of a solution prepared by mixing 50.00 mL of 0.10 *M* NH₃ with 25.00 mL of 0.10 *M* NH₄Cl? Assume that the volume of the solutions are additive and that $K_b = 1.8 \times 10^{-5}$ for NH₃. [9.26]

7. Calculate the pH when 0.68 g of C₆H₅COONa (FW = 144.1 g/mol) is added to 18 mL of 0.50 *M* benzoic acid, C₆H₅COOH (FW = 122.1 g/mol). Ignore any changes in volume. The K_a value for C₆H₅COOH is 6.5 x 10⁻⁵. [**3.91**]

8. Calculate the pH of a solution prepared by adding 20.0 mL of 0.100 *M* HCl to 80.0 mL of a buffer that is comprised of 0.25 *M* NH₃ and 0.25 *M* NH₄Cl. K_b of NH₃ = 1.8 x 10⁻⁵. [**9.17**]

9. Determine the volume in mL of 0.781 M KOH_(aq) needed to reach the half-equivalence (stoichiometric) point in the titration of 49.8 mL of 0.494 M HClO_(aq). The K_a of HClO is 3.0 x 10⁻⁸. [**1.57E1**]

10. Aniline $(C_6H_5NH_2)$ has a $K_b = 3.8 \times 10^{-10}$. If 100.0 mL of a 0.5000 *M* aqueous aniline solution is mixed with 100.0 mL of 0.5000 *M* aqueous hydrochloric acid, the resulting solution will have a pH. [**<7**]

11. Calculate the pH of a 0.50 *M* solution of sodium acetate (NaCH₃COO). The *K*_a of acetic acid (CH₃COOH) is 1.8 x 10⁻⁵. [9.22]

12. What is the pH of 0.422 *M* methylammonium bromide, CH₃NH₃Br? At 25°C, the K_b of CH₃NH₂ is 4.2 x 10⁻⁴? [5.50]

13. At 25 °C the solubility of barium carbonate is 9.00 x 10^{-5} mol/L. Calculate the value of K_{sp} at this temperature. [8.1E-9]

14. The K_{sp} of AgCl at 25 °C is 1.6 x 10⁻¹⁰. Consider a solution that is 1.0 x 10⁻⁹ M in CaCl₂ and 1.0 x 10⁻¹ M in AgNO₃.[$Q > K_{sp}$ and a precipitate will form]

15. One liter of a saturated solution of CaF₂ contains 0.0167 g of dissolved CaF₂ (78.1 g/mol). What is the K_{sp} for CaF₂? [3.91E-11]

16. What is the solubility of CaF₂ (assume $K_{sp} = 4.0 \times 10^{-12}$) in 0.035 M NaF? [**3.3E-9**]

17. For which salt in each of the following groups will the solubility depend on pH? [i) NaF; ii) Ba(NO₂)₂; iii) Ca(OH)₂; iv) Fe(CN)₂]
i) NaF, NaCl; ii) Ba(NO₃)₂, Ba(NO₂)₂; iii) Ca(OH)₂, CaCl₂; iv) Fe(NO₃)₂, Fe(CN)₂

18. The K_{sp} of Ag₂SO₄ is 1.2 x 10⁻⁵. What is the solubility of Ag₂SO₄ (mol/L) in 0.25 *M* AgNO₃? [1.92E-4]

19. What is the pH of the resulting solution if 0.01944 mol of methylamine, CH₃NH₂, is added to 0.00351 mol of HCl in 60.0 mL of aqueous solution? Assume that the volume of the solution doesn't change. $CH_3NH_{2(aq)} + HCl_{(aq)} \rightarrow CH_3NH_3^+_{(aq)} + Cl_{(aq)}^-$. The dissociation of $CH_3NH_3^+$ has a $K_a = 2.70 \times 10^{-11}$, with reaction $CH_3NH_3^+_{(aq)} + H_2O_{(l)} \rightleftharpoons CH_3NH_{2(aq)} + H_3O^+_{(aq)}$. [11.23]