
- 1. Lanthanum(III) chloride dissolves in water according to: $LaCl_{3(s)} \rightarrow La^{3+}_{(aq)} + 3 Cl^{-}_{(aq)}$. What is the boiling point of the solution when 0.2453 g of $LaCl_3$ (molar mass 245.3 g/mol) is dissolved in 10.0 g of H_2O (K_b of water is 0.512 °C·kg/mol)? [100.205 °C]
- 2. Calculate the molarity of an aqueous solution that is 22.3% by mass calcium chloride. You might need to know that the density is 1.20 g/mL. [2.41 M]
- 3. The proposed mechanism for a reaction is:
- 1) $A_{(g)} + B_{(g)} \rightarrow X_{(g)}$ (slow);
- 2) $X_{(g)} + B_{(g)} \rightarrow Y_{(g)}$ (fast);
- 3) $Y_{(g)} \rightarrow C_{(g)}$ (fast).

Which of the following would be a rate law for the reaction? [rate = k[A][B]]

4. The figure shown is the reaction coordinate for a reaction with labeled points $A \to B \to C \to D \to E$. Classify the reaction based on the coordinate diagram. [A two-step exothermic reaction]

- 5. Calculate the pH of a solution prepared by adding 20 ml of 0.1M HCl to 80 ml of a buffer that is comprised of 0.25 M NH₃ and 0.25M NH₄Cl. K_b of NH₃ is 1.8× 10⁻⁵. [9.17]
- 6. The K_{sp} of AgCl at 25 °C is 1.6 × 10⁻¹⁰. Consider a solution that is 1.0 × 10⁻² M in CaCl₂ and 1.0 × 10⁻⁸ M in AgNO₃. Will a precipitate of AgCl form? [$Q > K_{sp}$ and a precipitate will form]
- 7. The K_{sp} of AgCl is 1.6×10^{-10} . What is the solubility of AgCl in 0.001 M MgCl₂? Give your answer using scientific notation (1.23e–4) and to two significant figures (one decimal place). [8.0e-8 M]
- 8. For the reaction 2 $H_{2(g)}$ + $Fe_2O_{3(s)} \rightleftharpoons 2$ $Fe_{(s)}$ + 3 $H_2O_{(g)}$, ΔG° = 53 kJ and ΔH° = 100 kJ. Which of the following is completely true about the relationship between ΔG and T for this reaction?

A. ΔG <0 when T>635K;

- B. $\Delta G > 0$ when T>635K;
- C. $\Delta G < 0$ when T>0.6K;
- D. ΔG <0 when T<635K;
- 9. Consider a galvanic cell built from the following half-reactions with their standard reduction potentials:

 $\text{Cr}_2\text{O}_7^{2^-}\text{(aq)} + 14 \text{ H}^+ + 6 \text{ e}^- \rightarrow \text{Cr}^{3+} + 7\text{H}_2\text{O} \quad \text{E}^\circ = 1.20 \text{ V};$

 $H_2O_{2(aq)} + 2 H^+ + 2 e^- \rightarrow 2 H_2O \quad E^\circ = 1.75 V.$

What is ΔG° at 25 °C for the reaction involved? (F = 96,485 J/V·mol) [-3.18kJ]

- 10. Consider the following system at equilibrium at 25 °C: $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$ for which $\Delta G^{\circ} = -92.5$ kJ. What will happen to the ratio of partial pressures of PCl_5 to Cl_2 if the temperature is raised? [decreases]
- 11. 210 Pb decays to produce exclusively 206 Hg with a half-life of 22.3 years. Starting with a sample of 7.50 g of 210 Pb, how many grams of 206 Hg (which does not decay) will be present after 17.5 years? [3.09 g]

1. Lanthanum(III) chloride dissolves in water according to: $LaCl_{3(s)} \rightarrow La^{3+}_{(aq)} + 3 Cl^{-}_{(aq)}$. What is the boiling point of the
solution when 0.2453 g of LaCl ₃ (molar mass 245.3 g/mol) is dissolved in 10.0 g of H ₂ O (K_b of water is 0.512 °C·kg/mol)? [100.205 °C]

2. Calculate the molarity of an aqueous solution that is 22.3% by mass calcium chloride. You might need to know that the density is 1.20g/mL . [2.41 M]			

- 3. The proposed mechanism for a reaction is:
- 1) $A_{(g)} + B_{(g)} \rightarrow X_{(g)}$ (slow);
- 2) $X_{(g)} + B_{(g)} \rightarrow Y_{(g)}$ (fast);
- 3) $Y_{(g)} \rightarrow C_{(g)}$ (fast).

Which of the following would be a rate law for the reaction? [rate = k[A][B]]

4. The figure shown is the reaction coordinate for a reaction with labeled points $A \to B \to C \to D \to E$. Classify the reaction based on the coordinate diagram. [A two-step exothermic reaction]

NH_3 and 0.25M NH_4Cl . K_b of NH_3 is 1.8×10^-5 . [9.17]	

5. Calculate the pH of a solution prepared by adding 20 ml of 0.1M HCl to 80 ml of a buffer that is comprised of 0.25 M $\,$

6. The K_{sp} of AgCl at 25 °C is 1.6×10^{-10} . Consider a solution that is 1.0×10^{-2} M in CaCl ₂ and 1.0×10^{-8} M in AgNO ₃ . Will a precipitate of AgCl form? [$Q > K_{sp}$ and a precipitate will form]		

7. The K_{sp} of AgCl is 1.6×10^{-10} . What is the solubility of AgCl in 0.001 M MgCl ₂ ? Give your answer using scientific notation (1.23e–4) and to two significant figures (one decimal place). [8.0e-8 M]		

- 8. For the reaction 2 $H_{2(g)}$ + $Fe_2O_{3(s)}$ \rightleftharpoons 2 $Fe_{(s)}$ + 3 $H_2O_{(g)}$, ΔG° = 53 kJ and ΔH° = 100 kJ. Which of the following is completely true about the relationship between ΔG and T for this reaction?
- A. ΔG <0 when T>635K;
- B. ΔG >0 when T>635K;
- C. ΔG <0 when T>0.6K;
- D. ΔG <0 when T<635K;

9. Consider a galvanic cell built from the following half-reactions with their standard reduction potentials:

$${\rm Cr_2O_7^{2-}}_{\rm (aq)}$$
 + 14 H $^+$ + 6 e $^
ightarrow$ Cr $^{3+}$ +7H2O $^-$ E $^\circ$ = 1.20 V;

$$H_2O_{2(aq)} + 2 H^+ + 2 e^- \rightarrow 2 H_2O \quad E^\circ = 1.75 V.$$

What is ΔG° at 25 °C for the reaction involved? (F = 96,485 J/V·mol) [-3.18kJ]

0. Consider the following system at equilibrium at 25 °C: $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$ for which $\Delta G^{\circ} = -92.5$ kJ. uppen to the ratio of partial pressures of PCl_5 to Cl_2 if the temperature is raised? [decreases]	What will

11. 210 Pb decays to produce exclusively 206 Hg with a half-life of 22.3 years. Starting with a sample of 7.50 g of 210 Pb, how many grams of 206 Hg (which does not decay) will be present after 17.5 years? [3.09 g]		